

Page 1

כد 9 بيوستکىا

در اين فصل به تحليل مفهوم حد مى برد/زيم كه در قلب حساب ديفر/نسيل و /نتكرال جاى دارد و

 بررسى شُدند قبل از مطالعه اين فصل يكبار ديكِر اين مفاهيم را مرور كنيد.

حد تابع:
با سـ مثال، مفهوم حد تابع روشن مىكنيم.
*

وتقى x نزديكى r|ست، 1 $\lim _{x \rightarrow r}\left(r x^{\gamma}+1\right)=19$

* * مثر: فرض كنيد دو صفر هستند اما بیدرنگ اين سوال مطرح مىشود كه رفتار (f(x) وقتى x نزديك (() است ولى خود (() نيست جَكو نه است؟ حل: ابتدا يك جدول مختصرى از مقادير f(x) تشكيل مىدهيم. برای اين منظور دو مقدار بزرگتر از (1) و دو مقدار كوچكتر ز (1)
$f(1 / 01)=\frac{(1 / 01)^{\psi}-1}{(1 / 01)^{4}-1}=1 / 0 \cdot \mathrm{~V}$

\mathbf{x}	$1 / 1$	$1 / 01$	1	$0 / 99$	$0 / 9$
$\mathbf{f (x)}$	$1 / 0 v$	$1 / 01$	$?$	$1 / 49$	$1 / 4$

وتتى x نزديك () ا است دو تاثير متفاوت روى كسر ديگر مخرج (1 - (1) نيز به سمت صفر ميل مىكند و تقسيم بر يكى عدد كوحكى، كسر را بزرگ مى سازد. كدام يكى از اين دو تأثير، موازنه را به نفع خود برهم مىزند؟ اتحادماى جبرى:
$\mathbf{x}^{r}-1=(\mathbf{x}-1)\left(\mathbf{x}^{r}+\mathbf{x}+1\right)$
$x^{\gamma}-1=(x-1)(x+1)$
ما را قادر مى سازد تا به اين سوال پاسخ دهيم.
با تقسيم دو عبارت و ساده كردن، رفتار (1) ميل میكند،
$\lim _{x \rightarrow 1} \frac{x^{r}-1}{x^{r}-1}=\frac{r}{r}$

 اتقاقى مىافتد؟

حلا: نمودار تابع در شكل روبرو رسم شده است. بـ وضوح ديله مى شود كـه

 مىكند. هر دو مقدار حدى وجود دارند ولى با هم برابر نيستن.

$$
f(x)= \begin{cases}1 & , x>0 \\ -1 & , x<0\end{cases}
$$

از سـ مثال بالا به نتايج مهم زير مىرسيم.

ا) وبور عر يك تاع f r) ممكن است

براى درك حد جپ و راست تابع در يـى نقطه به جدول زير توجه كنيد.

$\lim _{x \rightarrow \mathbf{a}^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$

1) $\lim _{x \rightarrow Y^{+}} f(x)$
f) $\lim _{x \rightarrow r^{+}} f(x)$
r) $\lim _{x \rightarrow r^{-}} f(x)$
D) $f(1)$
r) $\lim _{x \rightarrow r^{-}} f(x)$
g) $f(r)$

تذكر 1 * تاع x تذكر

٪٪ مثالا :مطابق شكل روبرو براى تابع f مطلوبست محاسبه مقادير زير:

٪ مثالل : در توابع زير حد تابع را در نقطه داده شده بيابيد:

1) $f(x)=\left\{\begin{array}{ll}x+1 \\ r & , ~ x \neq 1 \\ \text {, } x=1\end{array} \quad \Rightarrow \lim _{x \rightarrow 1} f(x)=\right.$?
r) $f(x)=\left\{\begin{array}{ll}r & , x \notin z \\ -r & , x \in z\end{array} \quad \Rightarrow \lim _{x \rightarrow r} f(x)=?\right.$
r) $f(x)=\left\{\begin{array}{ll}x^{r}+1 & , x>1 \\ 0 & , x=1 \\ r x-0 & ، x<1\end{array} \quad \Rightarrow \lim _{x \rightarrow 1} f(x)=?\right.$
$\lim _{x \rightarrow 1^{+}} f(x)=$
$\lim _{x \rightarrow 1^{-}} f(x)=$
لسه ا * شر تاع ر/ يك نتطه به معر ار آن رر آن نتطه ارتباطى نرار.

- (${ }^{F}$
$\lim _{x}$

كدام است؟ $\lim _{x \rightarrow 1} g(x)$
$r(r$
r(
حل

* *

1) $\lim _{x \rightarrow 0} x^{r}$
r) $\lim _{x \rightarrow 0}\left[x^{r}\right]$

اين حفر، حفر حدى است.

$$
\lim _{x \rightarrow 0}{ }^{x}=0 \quad \text { (صفر حدى است) }
$$

Y با با توجه به نـودار تابع، ديده مىشود كه به ازاء مقادير كمى بيشتر $\lim _{x \rightarrow 0}\left[x^{\gamma}\right]=0 \quad(ص$ (صط مطلق است)

 - بـ شلل اهای زير توبه كنير.

X: حد در)
(حد حبٍ و راست موجودند ولى نابرابر)

X, حد در)

1) $\lim _{x \rightarrow 1^{-}} \sqrt{x-1}$
r) $\lim _{x \rightarrow 0^{+}} \sqrt{x-\sqrt{x}}$

٪ مثال: حود زير رادر صورت وجود بيابيد:

1) $\frac{\text { حد وجود ندارد }=0 \text { مفر مطلق }}{\text { مطلق }}$
r) $\frac{\text { حد وجود ندارد }}{\text { صفر مطلق حلق }}$
r) $\frac{\text { حد وجود ندارد }=\text { عغر مطلق }}{\text { عد }}$

* مثلا : حاصل حدود زير رادر صورت وجود بيابيد:

1) $\lim _{x \rightarrow 0^{+}} \frac{[x]}{\left[x^{\gamma}\right]}$
r) $\lim _{x \rightarrow \frac{1}{r}} \frac{r-x}{[x]}$
r) $\lim _{x \rightarrow 0^{+}} \frac{x}{[x]}$
2) $\frac{\text { صفر مطلى حدلى }}{\text { حطل }}=$ 。

* *

1) $\lim _{x \rightarrow 1^{+}} \frac{[x]-1}{x^{r}-1}$
r) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{4}-1}$

$$
0(F \quad 1(r
$$ (- (Y

حل
: $x \rightarrow(-1)^{+}$كدام است؟ $\frac{1}{r}(r$

- $r \quad-\frac{1}{r}()$
(1) حلـ: گزين

توابعى كه براى آنها حد حبٍ و راست محاسبه مىكنيم: ا- توابع براتتى:
(الغ) $x=1$
$\lim _{x \rightarrow 1^{+}}[x]=\lim _{\varepsilon \rightarrow 0^{+}}[1+\varepsilon]=1$
$\lim _{x \rightarrow 1^{-}}[x]=\lim _{\varepsilon \rightarrow 0^{+}}[1-\varepsilon]=0$
 +
 (ر) $\boldsymbol{x} \mathbf{x}=\frac{\mu}{r}$
$\lim _{x \rightarrow \frac{r}{+}_{r}^{r}}[x]=\lim _{\varepsilon \rightarrow 0^{+}}\left[\frac{r}{r}+\varepsilon\right]=1$
$\lim _{r^{-}}[x]=\lim _{\varepsilon \rightarrow 0^{+}}\left[\frac{r}{r}-\varepsilon\right]=1$ $x \rightarrow \frac{r^{-}}{r}$

(به عنوان مثال عدد ٪/ا را در نظر بگيريد)

$$
\mu_{(}
$$

(Y) حل: گزينه
توجه مىكنـيم كه

$$
\begin{aligned}
& \mathbf{x} \longrightarrow \mathbf{x}^{+}: \quad: \quad \mathbf{x}=\mathbf{x}_{\circ}+\varepsilon \\
& \mathbf{x} \longrightarrow \mathbf{x}^{-}: \quad: \quad \mathbf{x}=\mathbf{x}_{\sim}-\varepsilon
\end{aligned}
$$

(1 - X + [x] - [Yx] (

1) $\lim _{x \rightarrow 0^{-}}([r x]-Y[x])$
r) $\lim _{x \rightarrow Y^{+}}\left[\frac{x}{y}\right]+[\sqrt{x}]$
r) $\lim _{x \rightarrow 0^{+}}([-x])$
2)

r)
r)
F)

1) $\lim _{x \rightarrow 0} \frac{|x|}{x}$
r) $\lim _{x \rightarrow r^{-}} \frac{r-[x]}{x-r} \sqrt{x^{r}-4 x+9}$

رـ_توابع قُحر مطالهىا

* * *الل: حدودزير رابيابيد.
r) $\lim _{x \rightarrow 0^{-}} \frac{x-|x|}{[x+1]-x}$

1) $f(x)=\left\{\begin{array}{ll}r & , x \in z \\ -r & , x \in R-z\end{array} \rightarrow \lim _{x \rightarrow r} f(x)=\right.$?
r) $f(x)=\left\{\begin{array}{ll}\sqrt{r} & , x>\sqrt{r} \\ -\sqrt{r} & , x<\sqrt{r}\end{array} \rightarrow \lim _{x \rightarrow(\sqrt{r})^{+}} f(x)=\right.$?
$r) f(x)=\left\{\begin{array}{ll}r x+r & , r x>\frac{1}{r} \\ \Delta x & , r x<\frac{1}{r}\end{array} \longrightarrow \lim _{x \rightarrow r^{+}} f(x)=?\right.$
 $f(r)(F$ $f(Y)(r$
$f(1)(Y$
$f(\circ)(1$

2) $\lim C f(x)=C \lim f(x)=C L$,
$\mathbf{x} \rightarrow \mathbf{a}$
$x \rightarrow \mathbf{a}$
r) $\lim (f(x) \pm g(x))=\lim f(x) \pm \lim g(x)=L_{1} \pm L_{\gamma}$
$x \rightarrow a$
$x \rightarrow a$
$x \rightarrow a$
r) $\lim (f(x) \cdot g(x))=\lim f(x) \cdot \lim g(x)=L_{\text {, }} \cdot L_{Y}$
$x \rightarrow a$

$$
x \rightarrow a \quad x \rightarrow a
$$

F) $\lim \frac{f(x)}{g(x)}=\frac{\lim _{x} f(x)}{\lim g(x)}=\frac{L_{1}}{L_{r}} \quad, \quad L_{r} \neq$ 。

$$
x \rightarrow a \quad x \rightarrow a
$$

ه) $\lim f^{n}(x)=(\lim f(x))^{n}=L_{1}{ }^{n}$
$x \rightarrow a$

$$
x \rightarrow \mathbf{a}
$$

$$
x \rightarrow a \quad x \rightarrow a
$$

^) $\mathrm{f}(\mathrm{x}) \leqslant \mathrm{g}(\mathrm{x}) \Rightarrow \lim \mathrm{f}(\mathrm{x}) \leqslant \lim g(x)$

$$
x \rightarrow a \quad x \rightarrow a
$$

$$
x \rightarrow \mathbf{a}
$$

) حد دارد ولى مقدار ندارد (F r حد ندارد ولى مقلار دارد حل :حزينه |11 1
 $\lim f(x) g(x)=$ 。 $x \rightarrow a$. 10 (M $\in \mathrm{R}^{+}$

1) $\lim _{x \rightarrow 0} x^{*} \sin \frac{1}{x}$

* *ثال: حاصل هر يك از حدهاى زير را بيابيد : :
r) $\lim _{x \rightarrow 0} \sin x \cdot \cos \frac{1}{x}$ $\mathbf{x} \rightarrow$ 。

(

$-1(F$
$r(r$

- (r

1 (حل
 r (F
$r(r$

- (Y

1 (1

$\lim _{x \rightarrow \mathrm{a}} f(\mathrm{~g}(\mathrm{x}))=\mathrm{L}$
بررسىا כد כر تابع fog :
فرض كنيم

:بس $\lim _{x \rightarrow 1} f(x)=-r, \lim _{x \rightarrow Y} g(x)=1: 山$
$\lim _{x \rightarrow r} f(g(x))=-r$

اما مشاهله مىكنيم كد به ازاء هر

در تـتجه

$$
\lim _{x \rightarrow-} g(x)=0, \quad \lim _{x \rightarrow 0} f(x)=0
$$

$f(g(x))= \begin{cases}r g(x)+0 & , g(x) \neq 0 \\ 0 & \mathbf{g}(\mathbf{x})=0\end{cases}$
$f(g(x))= \begin{cases}r[x]+0 & ,[x] \neq 0 \quad \text { يعنى } x \geq 1 \text { ي } \quad \text { يعنى } \quad 0 \leq 0<0 \\ 0 & ,[x]=0\end{cases}$

$$
\lim _{x \rightarrow \frac{1}{r}} \text { fog }=0 \text { سی }
$$

لذا مشاهده مىكنيم كه تضيه حدى تركيب توابع، به صورتى كى در قبل بيان شد نمىتواند صحيح باشد. عوامل اصلى در صحيح نبودن قضيه بـ صورت بالا آن است كه ديگر آن كه در تابع f(b)

$$
\lim h(x)=\lim g(x)=L
$$

آنگاه

$$
\lim f(x)=L
$$

$$
x \rightarrow a
$$

$\frac{1}{x}-1<\left[\frac{1}{x}\right] \leqslant \frac{1}{x}$

حل:طبق تعريف تابع جزء صحيح :

دو حالت در نظر مى گيريم. ابتدا نرض مىكنيم + $1-x<x\left[\frac{1}{x}\right] \leqslant 1$
$\lim _{x \rightarrow 0^{+}} x\left[\frac{1}{x}\right]=1$

$$
\text { ولى داريم } 1=\lim _{x \rightarrow 0^{+}}(1-x)=\lim _{x \rightarrow 0^{+}} \text {سبت اصل فشار: }
$$

. $x \rightarrow$ 。

$$
\begin{aligned}
& \text { حر اقل يكى از رو شرط زير برقرا, باشر: } \\
& f(b)=L_{(1)}
\end{aligned}
$$

رفع ابهام از حالت ($\lim _{x \rightarrow x}$: $\frac{f(x)}{g(x)}=\frac{0}{\circ}$
برای ,فع اببام از هالت ذْ از روشواى زير استغاره مىینيم: (

 اـحذف عامل صشر شونده:
در رفع 'بهام از حالت

1) $a^{r}-b^{r}=(a-b)(a+b)$
$\left.{ }^{r}\right) a^{r} \pm b^{r}=(a \pm b)\left(a^{r}+b^{r} \mp a b\right)$
2) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$
r) $\lim _{x \rightarrow a} \frac{x^{r}-a^{r}}{x^{r}-a^{\varphi}}$
r) $\lim _{x \rightarrow 1} \frac{1-x^{n}}{1-x^{m}}$
$1-x^{\mathbf{n}}=(1-x)\left(1+x+x^{r}+\ldots .+x^{n-1}\right)$ مى شود. بـ اتحادهاى زير توجه كنيد:

٪ مثال: حدود زير را بيابيد
$1-x^{m}=(1-x)\left(1+x+x^{r}+\ldots .+x^{m-1}\right)$
F) $\lim _{x \rightarrow-1} \frac{1-\sqrt[0]{x+y}}{1-\sqrt[r]{?}}$

จ） $\lim _{x \rightarrow Y} \frac{(x-r)^{r}+r(x-r)}{r(x-r)}=\lim _{x \rightarrow r} \frac{(x-r)\left((x-r)^{r}+r\right)}{r(x-r)}=\frac{r}{r}$
\＆） $\lim _{x \rightarrow 0} \frac{\sqrt{Y+r x+x^{r}}-r}{r x}$

P ـ هم ارزءاهایا توابع：

$\lim _{x \rightarrow x} \frac{f(x)}{g(x)}=1$ تعريف：رو تاع
，ر，اينمورت مىنويسيع：
$f(x) \cong g(x)$
علامت § ، علامت هم ارزى است．

1） $\sin _{x \rightarrow \text { 。 }} x \cong x$
r） $\sin _{x \rightarrow \text { 。 }}(a x) \cong a x$
r） $\sin _{x \rightarrow 0} x^{n} \cong x^{n}$
F） $\sin _{x \rightarrow 0}{ }^{n} x \cong x^{n}$
الف）همارزعاهای مثلاتىا： ا）هع ارزی تاع

$$
\sin u=u * u \rightarrow 0, u \in t \quad x \rightarrow x, f /
$$

به عنوان مثال：
$\sin _{x \rightarrow 1}(\sqrt{x}-1) \cong \sqrt{x}-1$
$\sin _{x \rightarrow Y}\left(x^{\gamma}-\mu\right) \cong x^{\gamma}-\gamma$

1) $\underset{x \rightarrow 0}{\operatorname{tg}} x \cong x$
r) $\underset{x \rightarrow \text { tg }}{ }(a x) \cong(a x)$
r) $\operatorname{tg}_{x \rightarrow \text { 。 }} x^{n} \cong x^{n}$
f) $\operatorname{tg}_{x \rightarrow 0}{ }^{n} x \cong x^{n}$

و به طور كلى:

1) $\underset{x \rightarrow 0}{\operatorname{tg}} x^{r} \cong x^{r}$
r) $\lg _{x \rightarrow \Lambda}(\sqrt[r]{x}-r) \cong \sqrt[r]{x}-r$

$$
1-\cos x \cong r\left(\sin \frac{x}{r}\right)^{r}=r\left(\frac{x}{r}\right)^{r}=\frac{x^{r}}{r}
$$

مى مانيم
$\underset{x \rightarrow 0}{1-\cos (r x) \cong} \frac{(r x)^{r}}{r}=r x^{r}$

$$
1-\cos ^{\mathrm{m}} u \cong \mathrm{~m}\left(\frac{\mathbf{n}^{x}}{x}\right) \longleftrightarrow u \rightarrow \cdot \Delta v_{0} \pi^{\prime}, x \rightarrow x_{0} \text { wat }
$$

$\lim _{x \rightarrow 0}(\cos r x-\cos r x) \cong \lim _{x \rightarrow 0}-r \sin \frac{\Delta x}{r} \sin \frac{-x}{r} \cong-r\left(\frac{\Delta x}{r}\right)\left(\frac{-x}{r}\right)$
V-

1) $(\sin x \pm \cos x)^{r}=1 \pm \sin Y x$
r) $\sin x \pm \cos x=\sqrt{r} \sin \left(x \pm \frac{\pi}{r}\right)$

$\lim _{x \rightarrow 0}\left(x^{\gamma}-\sin ^{\gamma} x\right) \neq \lim _{x \rightarrow 0}\left(x^{\gamma}-x^{\gamma}\right)=0$
2) $x-\sin x \cong \frac{x^{r}}{4}$
r) $\boldsymbol{\operatorname { t g }} \boldsymbol{x}-x \cong \frac{x^{r}}{r}$
r) $\boldsymbol{\operatorname { t g }} \mathbf{x}-\sin x \cong \frac{\mathbf{x}^{r}}{r}$

ــ استغاره ا; هع ارزییای زير >/ تستواكمك مینماير.

1) $\lim _{x \rightarrow 0} \frac{\sin \Delta x}{\operatorname{tg} r x}$
r) $\lim _{x \rightarrow 0} \frac{\sin ^{\gamma} \gamma x}{x^{\varphi}}$
r) $\lim _{x \rightarrow 0} \frac{\sin x+\sin r x+\ldots+\sin n x}{x}$
F) $\lim _{x \rightarrow 0} \frac{\sin x \cdot \sin Y x \ldots . . \sin n x}{x^{n}}$
2) $\lim _{x \rightarrow 0} \frac{1-\sqrt{\cos x}}{1-\sqrt{\cos x}}$
^) $\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-\sqrt{\cos \gamma x}}{x^{\gamma}}$
3) $\lim _{\pi^{+}} \frac{\sqrt{1-\sin Y x}}{\operatorname{tg} x-1}$
$x \rightarrow \frac{\pi^{+}}{4} \operatorname{tg} x-1$
4) $\lim _{x \rightarrow 0} \frac{\sin (\pi \sin x)}{x}$
5) $\lim _{x \rightarrow 0} \frac{1-\cos ^{r} x}{x^{r}}$
v) $\lim _{x \rightarrow 0} \frac{\cos x-\cos r x}{x^{\gamma}}$
6) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{r}}$

ا) هر كشيرالبمله ا; x
$r x^{r}-x \cong-x$
$\sqrt[r]{x}+x^{r}-x \cong \sqrt[r]{x}$
$\mathrm{x} \rightarrow$ 。
| (ا) هم ارزیا مهم:

$$
\sqrt[m]{1 \pm f(x)} \cong 1 \pm \frac{1}{m} f(x) \Leftrightarrow f(x)=0 ، x=x, x \text { وقتى به }
$$

$\underset{x \rightarrow-}{\sqrt[0]{1+x}} \cong 1+\frac{1}{0} x$
$\underset{x \rightarrow-}{\sqrt[r]{1+x^{r}} \cong 1} \cong \frac{1}{r} x^{r}$

1) $\lim _{x \rightarrow 0} \frac{x^{r}-x^{r}-r x}{x^{0}+\Delta x} \xrightarrow{\text { (1) } ط \text { (}}$
r) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt[r]{x}+\sqrt{x}+x}{r \sqrt[r]{x}+\sqrt{x}} \xrightarrow{\text { (1) } ط}$
r) $\lim _{x \rightarrow 0} \frac{\sqrt[r]{1+x^{r}}-1}{x^{r}} \xrightarrow{(r) \text { (r) }}$
F) $\lim _{x \rightarrow 0} \frac{\sqrt[m]{1+\alpha x}-\sqrt[n]{1+\beta x}}{x} \xrightarrow{(r) \text { بق }}$

*

: \%

$$
\%
$$

نرض كنيد وتى f(x) ، بدون ميج محدوديتى بزرگ و بزرگتر شود و بـ ميّج عدد متناهى ثابتى ميل نكند، در اين شرايط $\lim \mathrm{f}(\mathbf{x})=+\infty$ حدِ بى نهايت تابع مطرح مىشود در اين حالت مىنويسيم: $\mathrm{x} \rightarrow \mathrm{x}$ 。

حال وتى f (x) ، بدون ميجّ محدوديتى در جهت منفى، بيشتر و بيشتر شود و به ميجّ عدد متنامى ثابتى نگرايد. مىگويم : $\lim f(x)=-\infty$
$\mathrm{x} \rightarrow \mathrm{x}$ 。

$\lim f(x)=+\infty$
$x \rightarrow a^{+}$

$\lim f(x)=-\infty$

$$
\mathbf{x} \rightarrow \mathbf{a}^{+}
$$

جهار شكل زير حدِ بى نهايت را مطرح مىكند :

$\lim f(x)=+\infty$ $\mathbf{x} \rightarrow \mathbf{a}^{-}$

$\lim f(x)=-\infty$
$\mathbf{x} \rightarrow \mathbf{a}^{-}$

1) $\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{1}{x^{n}}= \begin{cases}+\infty & n=r k \\ +\infty & n=r k+1\end{cases}$
r) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{n}}= \begin{cases}+\infty & n=r k \\ -\infty, & n=r k+1\end{cases}$
2) $\operatorname{Lim}_{x \rightarrow r^{+}} \frac{1}{r-x}$
r) $\operatorname{Lim}_{x \rightarrow r^{-}} \frac{[x]-r}{x-r}$

ه) $\operatorname{Lim} \operatorname{tg} x$
$\mathrm{x} \rightarrow \frac{\pi}{\mathrm{r}}{ }^{+}$
v) $\operatorname{Lim}_{x \rightarrow r^{+}} \frac{\sqrt{x^{r}-9}}{x-r}$
r) $\operatorname{Lim}_{x \rightarrow r^{-}} \frac{x}{(r-x)^{r}}$
F) $\operatorname{Lim}_{x \rightarrow \frac{\pi}{y}} \frac{1+\operatorname{Cos} x}{1-\operatorname{Sin} x}$
8) $\operatorname{Lim} \operatorname{tg} x$
$\mathrm{x} \rightarrow \frac{\pi}{\mathrm{r}}{ }^{-}$

لهضيه ا ：آر $x \rightarrow x$ 。
M > 0 الف-اگر

1） $\operatorname{Lim}(f(x)+g(x))=+\infty$ $\mathrm{x} \rightarrow \mathrm{x}$ 。
r） $\operatorname{Lim}(f(x)+g(x))=+\infty$ $x \rightarrow x_{\text {，}}$
r） $\operatorname{Lim} f(x) \cdot g(x)=+\infty$ $\mathrm{x} \rightarrow \mathrm{x}$ 。

M＜
r） $\operatorname{Lim} f(x) \cdot g(x)=-\infty$ $\mathrm{x} \rightarrow \mathrm{x}$ 。

סفيه $x \rightarrow x$ 。 $x \rightarrow x$ 。 M＞الف－اگر

1） $\operatorname{Lim}(f(x)+g(x))=-\infty$ $x \rightarrow x$ 。
r） $\operatorname{Lim}(f(x)+g(x))=-\infty$ $x \rightarrow x$ 。
r） $\operatorname{Lim} f(x) \cdot g(x)=-\infty$ $x \rightarrow x$ 。
ب- اكر
r） $\operatorname{Lim} f(x) \cdot g(x)=+\infty$ $x \rightarrow x_{0}$ 。
．lim f $(x+a)=+\infty$ اكر و تنها اكر $\lim f(x)=+\infty$ مثالر：ثابت كنيد كه $x \rightarrow$ ．$\quad x \rightarrow a$
$\left\{\begin{array}{l}\mathbf{x}+\mathbf{a}=\mathbf{t} \\ \mathbf{x} \longrightarrow 0 \Rightarrow \mathbf{t} \longrightarrow \mathbf{a}\end{array}\right.$
سل: با فرض x + a = t
$\Rightarrow \quad \lim _{\mathbf{t} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{t})=+\infty$

1) $\lim _{x \rightarrow 0}\left[\frac{1}{x}\right]$

$$
x \rightarrow \text { 。 }
$$

حل :
r) $\lim \frac{(-Y)^{[x]}}{x-Y}$

حل

قد כر بیانهايت

وقتى x به طور دلخواه از هر عدد مثبت بزرگى، بزرگتتر گردد گوينيم x ميل مىكند به سـت م
$\operatorname{Lim} f(x)=b$
$x \rightarrow+\infty$

$\operatorname{Lim} f(x)=b$
$x \rightarrow-\infty$
(به عدد ثابت b f(x) شكل آن در بالا رسم شده است. ٪ مثالل : در شكل روبرو مقادير خواسته شده را بيابيد؟

1) $\operatorname{Lim}_{+} f(x)$
r) $\operatorname{Lim} f(x)$
r) $\operatorname{Lim}_{-} f(x)$
f) $\operatorname{Lim} f(x)$
a) $f(\circ)$

حل :با توجه به تعاريف حد در بىنهايت و حد بى نهايت تابع خواميم داشت :

1) $\operatorname{Lim}_{+} f(x)=$
$x \rightarrow 0^{+}$
r) $\operatorname{Lim} f(x)=$ $x \rightarrow+\infty$
r) $\operatorname{Lim} f(x)=$ $x \rightarrow 0^{-}$
F) $\operatorname{Lim}(f)=$ $x \rightarrow-\infty$
a) $f(\circ)=$

1) $x^{0}-r x^{r}-r \cong x^{0}$

ү) $\sqrt{x \rightarrow \sqrt{x+\sqrt{x}}} \cong \sqrt{x}$ $x \rightarrow \infty$

1) $\lim _{x \rightarrow \infty} \sqrt{x^{r}+a} \cong|x|$
r) $\lim _{x \rightarrow \infty} \sqrt{x^{r}+b x+c} \cong\left|x+\frac{b}{r}\right|$
r) $\lim _{x \rightarrow \infty} \sqrt{a x^{\gamma}+b x+c} \cong \sqrt{a}\left|x+\frac{b}{r a}\right|$
$\underset{x \rightarrow-\infty}{\sqrt[r]{x^{\psi}-r x^{\mu}-r}} \cong \underset{x \rightarrow-\infty}{\sqrt[\psi]{1}\left|x+\frac{-r}{\mid \times r}\right|} \cong \underset{x \rightarrow-\infty}{\left|x-\frac{r}{r}\right|=-x+\frac{r}{r}}$

```
(الف \(10<a<1 \Rightarrow \lim a^{x}=\). \(x \rightarrow+\infty\)
\(\lim a^{x}=+\infty\)
\(\mathbf{x} \rightarrow-\infty\)
ب) \(\begin{array}{ll}\text { ب } & \Rightarrow \lim _{x \rightarrow+\infty} x=+\infty \\ x \rightarrow+\infty\end{array}\)
\(\lim a^{x}=\)
\(x \rightarrow-\infty\)
```

$-\infty$ ($\quad+\infty$
lim $r^{\frac{1}{x}}$ كدام است؟ : حاص؟ $x \rightarrow \circ^{-}$
$1(Y$

- (1

جالّ: گزينه (1) براى رنع ابهام در اين حالت از همارزىهاى جبرى استفاده مىكنيم. *

1) $\operatorname{Lim}_{x \rightarrow+\infty} \frac{x^{r}+r}{x^{r}+r}$
r) $\operatorname{Lim}_{x \rightarrow-\infty} \frac{r x^{\gamma}+r}{r x^{\gamma}-\Delta x}$
r) $\operatorname{Lim}_{x \rightarrow-\infty} \frac{x+1}{x^{\gamma}+1}$
F) $\operatorname{Lim}_{x \rightarrow-\infty} \frac{r x-1}{\sqrt{r x^{Y}+x+1}}$
(1) 山

راله مهر: با استفاده از ممارزىها، بزرگترين درجهما را نسبت به مم مىيريم.
:

1) $\operatorname{Lim}_{x \rightarrow+\infty} \frac{r x-\operatorname{Cos} x}{r x}$
r) $\operatorname{Lim}_{x \rightarrow+\infty} \frac{\operatorname{Sin} x}{x}$
a) $\operatorname{Lim}_{x \rightarrow-\infty}\left[\frac{1}{x}\right]$
2)

r)

+ + لته : وقتى راشل براكت بىنبايت شور مى توانيم براكت را برارايم.

توجه : نكته گفته شده در بالا وقتى جیع جبرى صفر شود صسيح نيست.
$r)$
F)
D)

1) $\lim \frac{x^{\gamma}-\Delta x}{x+1}$ $x \rightarrow-\infty$
r) $\quad \lim \frac{\left(x^{\gamma}-x\right)^{0}}{x^{0}(x-1)}$

$$
\mathbf{x} \rightarrow-\infty
$$

r) $\lim _{x \rightarrow \infty} \frac{x}{x^{\gamma}+1} \sin x$

$$
\mathbf{x} \rightarrow \infty
$$

f) $\quad \lim \frac{\sqrt{x+\sqrt{x}}}{\sqrt{Y x+1}}$
$x \rightarrow+\infty$
0) $\quad \lim _{n \rightarrow+\infty} \frac{r^{n} \times r+r^{n+r}}{r^{n}+r^{n-1}}$
9) $\quad \lim \frac{n!+(n-1)!}{n!+(n+1)!}$ n $\rightarrow+\infty$
v) $\lim _{x \rightarrow-\infty}\left[\frac{r x+1}{x-1}\right]$
^) $\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{\gamma}+x+1}+x}{\Delta \sqrt{x^{\gamma}+\gamma}}$

> سـ رغع ابهام از כالت × × • :

براى رفع ابهام از حالت ه × \times عامل بيىنايت را بـ مخرج انتقال داده و مسئله را در حالت

1) $\lim _{x \rightarrow 1}(x-1) \operatorname{tg} \frac{\pi x}{r}$
r) $\lim _{\pi} \operatorname{tg} r x \operatorname{tg}\left(\frac{\pi}{f}-x\right)$
$x \rightarrow \frac{\pi}{F}$
عر_ رفع ابهام از כالت م - م :

برای رفع ابعام >, اين قالت، سعى میکنيم مسنله , بـ قالت الف- آא x \rightarrow a

1) $\lim _{x \rightarrow}\left(\frac{1}{x(x+1)}-\frac{1}{x}\right)$
r) $\lim _{x \rightarrow}\left(\frac{1}{x^{\gamma}}-\frac{1}{x^{\gamma}}\right)$
r) $\operatorname{Lim}\left(\sqrt{x^{\gamma}+\gamma x}-\sqrt{x^{\gamma}-\gamma x}\right)$
F) $\operatorname{Lim}(\sqrt{x+\sqrt{x}}-\sqrt{x})$
$x \rightarrow+\infty$
$x \rightarrow+\infty$
$\lim _{x \rightarrow+\infty}\left(a x+1-\sqrt{x^{r}+b x+r}\right)=r$

„مجانبها"،

گويمم منحنى تابع y=f(x) داراى شاخه بى نهايت است هرگاه نقطه يا نقاطى روى منحنى باشدكه حداقل يكى از مختصههاى آن،

:

هرگاه منحنى تابع y = f (x) داراى شاخه بینهايت باشد خط D ار مجانب آن شاخه گويـيم هرگاه نقطه متغير M روى آن شاخه بى نهايت دور شود فـاصله آن از خط D صفر شود.
"
مجانب قائم تابع همان حدِ بینهايتِ تابع است يعنى هرگاه يكى از حالتهاى زير اتفاق افتد خط x = a مجانب قائم است.

1) $\lim f(x)= \pm \infty$

$$
x \rightarrow a
$$

r) $\lim f(x)=+\infty$ $\mathrm{x} \rightarrow \mathrm{a}^{+}$
r) $\lim f(x)=-\infty$ $x \rightarrow \mathrm{a}^{-}$
f) $\lim f(x)=-\infty$ $\mathbf{x} \rightarrow \mathbf{a}^{+}$
D) $\lim f(x)=+\infty$ $x \rightarrow a^{-}$

 , اشته بشنر.

 نكّ

1) $y=\frac{x^{r}-r x+r}{x^{r}-\Lambda}$
r) $y=\frac{x^{r}-r x+1}{x^{r}-x}$
r) $y=\frac{\sqrt{x-1}}{x^{4}-r}$
f) $y=\sqrt{\frac{1-x}{1+x}}$

٪

$(1$

حل

F

كويِم هرّاه

$$
x \rightarrow \infty
$$

نكته 1 \# توابعى كه ر امنه مaرور رارنر مبانب افقى نرارنر. نكت مaاسبع كنيم.

1) $y=\frac{1-x^{r}}{r+r x^{r}}$
r) $y=x-\sqrt{x^{\gamma}-\gamma x+\Delta}$
r) $y=\frac{x}{\sqrt{Y-x^{\gamma}}}$

جند $y=a+\frac{x-r}{x^{r}-r x+r} \quad$ جهانب دارد؟ $r(r$ r ${ }^{\prime}$
(1)
(1)
($f(x)=\frac{1}{x}+\frac{F-Y x}{\sqrt{x^{\gamma}-Y x}}$ وقتى م $\quad \therefore$

$$
y=r(r \quad y=1(r
$$

$y=-1(r$

$$
\begin{aligned}
& y=-r \\
& \text { (f) } \dot{C}: 1=1
\end{aligned}
$$

y = $\frac{x^{r}-1}{x^{\gamma}+1}$ در اطراف مجانب افقى خود به كدام صورت است؟
(F)

(r

بَيوستگى چپب دارد

$$
f(x)=\operatorname{Lim}_{x \rightarrow x_{n}} f(x)
$$

(r) اين حد با مقدار تابع در نقطه مورد نظر برابر باشد يعنى:

تخكر 1 : هرگاه شرط زير برقرار باشد تابع در x = x
$\operatorname{Lim} f(x)=f\left(x_{0}\right) \neq \operatorname{Lim} f(x)$

$$
x \rightarrow x^{+} . \quad x \rightarrow x^{-}
$$

تذكر P : هرگاه شرط زير برقرار باشد تابع در x=x نقط بيوستگى چچپ دارد مطابق شكل
$\operatorname{Lim}_{f(x)}=f\left(x_{0}\right) \neq \operatorname{Lim}_{f(x)}$
$x \rightarrow x^{-}$。 $x \rightarrow x^{+}$。

$$
\operatorname{Lim}_{1^{+}}[r x]=1, \quad \operatorname{Lim}_{1^{-}}[r x]=0 \quad f\left(\frac{1}{r}\right)=1
$$

تابع در X=

$$
\begin{aligned}
& \text { با توجه به موارد مطرح شده در شكل، بيوستگى رابه صورت زير تعريف مىكنيم: } \\
& \text { I-تابع f در نقطه } \mathbf{f} \text { f }
\end{aligned}
$$

$$
\begin{aligned}
& -1(F \\
& \frac{-1}{r}(r \\
& 1(r \\
& \frac{1}{r}(1 \\
& \text { (F) }
\end{aligned}
$$

$$
\ldots \text {.... } f(x)=\left[x+\frac{r}{r}\right]+\left[x-\frac{1}{r}\right] \text { تابي } x=\frac{1}{r} \text { ٪ مثال: در نقطه به طول }
$$

$$
\begin{aligned}
& \text { + } \\
& \text { + } \\
& \text { + } \\
& \text { + }
\end{aligned}
$$

($y=\frac{x^{\varphi}-1}{x^{r}-\varphi x^{\gamma}+\varphi x}$ در حند نقطه ناييوسته است؟

Page 39

مشتق

 حل: براى تعيين يـى خط، دو نقطه متها يز لازم داريم. اما تنها نقطهاى كه از خط
 مماس در (Y, Y) در دسترس ماست خود نقطه (Y, F) است. براى رنـع ايـن مشكل يك نقطه Q روى منحنى Q (Y =

$m=\frac{y_{r}-y_{1}}{x_{r}-x_{1}}=\frac{(r / 1)^{r}-r^{r}}{r / 1-r}=\frac{0 / F 1}{0 / 1}=r / 1$

 (مثبت يا منفى) بسياركوحك را در نظر بعير يم شيب،

$$
m_{P T}=\frac{y-y}{x-x_{0}}=\operatorname{tg} \alpha
$$

زاويهى خط مماس ميل مىكند. با توجه به اينكه وتتى P T

$$
m_{A T}=\operatorname{tg} \theta=\lim _{\alpha \rightarrow \theta} \operatorname{tg} \alpha=\lim _{x \rightarrow x_{0}} \frac{y-y_{0}}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x_{0}-x_{0}}
$$

.

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{Y}
\end{equation*}
$$

 $f^{\prime}\left(\mathbf{x}^{+}\right)=\lim \frac{f\left(x_{c}+h\right)-f\left(x_{0}\right)}{h}$
$h \rightarrow{ }^{+}$

$$
\begin{equation*}
f^{\prime}\left(x^{-}\right)=\lim \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \tag{مشتقحچب}
\end{equation*}
$$

$h \rightarrow 0^{-}$

نتَ

نیَ كنير كی تع > X, x بيوسته است).

$\frac{r}{r}(r$
$\frac{F}{r}(r$
$\frac{r}{f}(r$
$r(1$

حل : گزينه (r)

$$
\lim _{h \rightarrow 0} \frac{f(a+k h)-f(a+n h)}{h}=(k-n) f^{\prime}(a)
$$

0114
iv (r
if (Y
$r(1$
(F) (1)
 بلافامله نتيبه مىيميعمكه:
(I) $\lim _{x \rightarrow a^{+}} f(x)=\lim \underset{x \rightarrow a^{-}}{f(x)}: \quad$ صر

$$
\mathbf{x} \rightarrow \mathbf{a}^{+} \quad \mathbf{x} \rightarrow \mathbf{a}^{-}
$$

(r) $\lim _{x \rightarrow a^{+}} f^{\prime}(x)=\lim _{x \rightarrow a^{\prime}}^{f^{\prime}(x)}: \quad: \quad$ هشت

مشتق راست و حبٍ يك تابع در نقطه ،x را حنين تعريف كرديم:

1) $f^{\prime}\left(x^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f\left(x_{x}+h\right)-f\left(x_{0}\right)}{h}$
r) $f^{\prime}\left(x^{-},\right)=\lim _{h \rightarrow 0^{-}} \frac{f\left(x_{-}+h\right)-f\left(x_{-}\right)}{h}$

منظور از دو حد نوق، موجور, ششتاهى و برابر باشند، آنگاه تابع در x = x مشتقيذير است.
 حل : با توجه به تعريف مشتق تابع، براى محاسبه مشقق در يكى نقطه از تعريف دوم استفاده مىكنيم:

$$
\mathbf{f}^{\prime}(\mathbf{x})=\lim _{\mathbf{x} \rightarrow \mathbf{x}_{\mathrm{o}}} \frac{f(\mathbf{x})-\mathbf{f}\left(\mathbf{x}_{0}\right)}{\mathbf{x}-\mathbf{x}_{0}}
$$

$$
f^{\prime}\left(0^{+}\right)=\lim \frac{|x|-0}{x-\circ}=\lim \frac{|x|}{x}=\lim \frac{x}{x}=1
$$

$$
x \rightarrow 0^{+} \quad x \rightarrow 0^{+} \quad x \rightarrow 0^{+}
$$

$$
f^{\prime}\left(\circ^{-}\right)=\lim \frac{|x|-0}{x-0}=\lim \frac{|x|}{x}=\lim \frac{-x}{x}=-1
$$

مركاه تابع و متناهى باشد.

 تذكر * مaluc عمورى يعنى مشتق ه تعريغ نمى شور. به شكلهاى زير دقت كنيد :

$x=a$ مشتق در f' $(a)=\infty$
تابع در x = مشتَ جبٍ و راست در x = a x = a نابرابرند و تابع در مشَقِذذير نيست.

تابع در x = x مشتقناپذير
است اما مشتق راست دارد

تابع در x=a مشتقنآذير است الما مشتق جپ دارد. در x = a مشتقنایذير است.

1) $\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}$
f $f(x)=\left\{\begin{array}{ll}r x^{r}-1 & ، x \geq 1 \\ x^{r}+1 & \mathbf{x}<1\end{array}\right.$ آنكاه مطلوبست محاسبه حدود زير:
r) $\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}$
r) $\lim _{h \rightarrow 0^{-}} \frac{f(1-h)-f(1)}{h}$

$\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=f^{\prime}{ }_{+}(1)$
$\mathbf{f}^{\prime}(\mathbf{x})=\left.q \mathbf{x}^{\mu}\right|_{\mathbf{x}=1}=\varepsilon$

$\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=f^{\prime} \quad$ (1)

 تعريف مشتق نيسـت براي اينكه به تعريف مشتق تبديل شود به صورت زير عمل مىكنيم (توجه كنيد كه در تعريف مشتق هر ضريبى كه

 از آن سـت مشتىبذير نباشد. بـ مثالهاى زير توجه كنيد:
2) $f(x)= \begin{cases}\sqrt{x} & , x \geq 0 \\ x^{r}+1 & , x<。\end{cases}$
 مىكنيم كی تابع در x = از راست بيوستش است بس سراغ وجود مشتق از اين سمت مىرويم. $\mathbf{f}^{\prime}{ }_{+}\left({ }^{\circ}\right)=\left.\frac{1}{r \sqrt{\mathbf{x}}}\right|_{\mathbf{x}={ }^{+}}=+\infty$
 مشتق راست وجود دارد نه چچت.
r) $f(x)= \begin{cases}x^{r} & , x \geq r \\ -x^{r}+i r & , x<r\end{cases}$

$\mathbf{f}^{\prime}{ }_{+}(r)=\left.r \mathbf{x}^{r}\right|_{\mathbf{x}=r}=1 r \quad \mathbf{f}_{-}^{\prime}(r)=-\left.r x\right|_{x=r}=-r$
ايِن نقَطه مشتقِذير است.

حكون (Y)
r) $f(x)=[\sin x] \quad$ د $x=\frac{\pi}{r}$
$\lim _{\pi}[\sin x]=0 \quad, \quad f\left(\frac{\pi}{r}\right)=1$
$x \rightarrow \frac{\pi}{r}$

 نزريكى اينَ نغطه به يكى از رو مورت زير است :

$$
\left\{\begin{array} { l }
{ \mathbf { f } _ { + } ^ { \prime } (a) = + \infty } \\
{ \mathbf { f } _ { - } ^ { \prime } (a) = - \infty }
\end{array} \quad \downarrow \sqrt [4] { \pi } \quad \left\{\begin{array}{l}
\mathbf{r}_{+}^{\prime}(a)=-\infty \\
\mathbf{r}_{-}^{\prime}(a)=+\infty
\end{array}\right.\right.
$$

به اير نتشه، نتشه بازکشت كوينر.

\%

$f A$

(f)

(r

توجه : آيا مى توانير راه سريعترى براى تشفيمن شكل بيابيرى فكر كنير.

 (و مورت زير است:

$$
f^{\prime}(a)=+\infty \quad f^{\prime}(a)=-\infty
$$

(1)
$f^{\prime}(x)=\lim _{x \rightarrow x} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow Y} \frac{\sqrt[r]{x-Y}-0}{x-Y}=\lim _{x \rightarrow Y} \frac{1}{\sqrt[r]{(x-Y)^{\gamma}}}$
$\Rightarrow \mathbf{f}^{\prime}{ }_{-}(\boldsymbol{Y})=\mathbf{f}^{\prime}{ }_{+}(\boldsymbol{Y})=+\infty$

* مثال|: مشتقیذيرى تابع

توجه - در تستهاى كنكور در بعضى از مواقع تانزانت زاويهى بين دو نيم مماس رسم شده در نقطه مورد نظر را مى خواهند كه به وسيلىى

نسه*

* مثال! : تابعهاى زير در چند نقطه مشتقپذير نيستند؟

1) $y=|x-1|+|x|$
r) $\mathbf{y}=\left|\mathbf{x}^{r}-\mathbf{x}^{r}\right|$
 $\frac{r}{r}\left(F \quad \frac{F}{r}(r) \frac{r}{r}(r\right.$
$\frac{r}{r}(1$
/r)

٪ .

م

$$
\mathbf{x} \rightarrow \mathbf{a}
$$

قضايا و فرمولاهایا مشتقا
با استفاده از تعريف مشتق مىتوانيم نرمولهاى زير راكه در سحاسبات كمك بسيارى مىنمايند بيابيم.

	تابع	فرمولע مشتا	مثال
1	$y=c$	$\mathbf{y}^{\prime}=$ 。	
r	$y=x^{n}$	$\mathbf{y}^{\prime}=\mathbf{n} \mathbf{x}^{\mathbf{n - 1}}$	$y=x^{r} \Rightarrow y^{\prime}=r x^{r}$
r	$y=\sqrt{x}$	$\boldsymbol{y}^{\prime}=\frac{1}{\gamma \sqrt{\mathbf{x}}}$	
F	$y=\frac{k}{x^{n}}$	$\mathbf{y}^{\prime}=\frac{-\mathbf{k n}}{\mathbf{x}^{\mathbf{n}+1}}$	$y=\frac{r}{x^{r}} \Rightarrow y^{\prime}=\frac{-q}{x^{\gamma}}$
0	$\mathbf{y}=\mathbf{u}+\mathbf{v}-\mathbf{w}$	$\mathbf{y}^{\prime}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime}-\mathbf{w}^{\prime}$	$y=x^{r}-\Delta x^{r}+x \longrightarrow y^{\prime}=r x^{r}-10 x+1$
4	$\mathbf{y}=\mathbf{u} . \mathbf{v}$	$\mathbf{y}^{\prime}=\mathbf{u}^{\prime} \mathbf{v}+\mathbf{v}^{\prime} \mathbf{u}$	$y=x^{\gamma}\left(x^{r}+1\right) \Rightarrow y^{\prime}=r x\left(x^{r}+1\right)+x^{\gamma} \cdot r x^{\gamma}$
V	$\mathbf{y}=\frac{\mathbf{u}}{\mathbf{v}}$	$\mathbf{y}^{\prime}=\frac{\mathbf{u}^{\prime} \mathbf{v}-\mathbf{v}^{\prime} \mathbf{u}}{\mathbf{v}^{Y}}$	$y=\frac{x^{\gamma}+1}{x} \Rightarrow y^{\prime}=\frac{(\gamma x) x-1\left(x^{\gamma}+1\right)}{x^{r}}$
\wedge	$y=\frac{1}{u}$	$\mathbf{y}^{\prime}=\frac{-\mathbf{u}^{\prime}}{\mathbf{u}^{r}}$	$y=\frac{1}{x^{r}-r x^{\gamma}} \Rightarrow y^{\prime}=\frac{-\left(r x^{\gamma}-\xi x\right)}{\left(x^{r}-r x^{\gamma}\right)^{\varphi}}$
9	$y=u^{n}$	$\mathbf{y}^{\prime}=\mathbf{n u} \cdot \mathbf{u}^{\mathbf{n - 1}}$	$y=\left(x^{r}+x\right)^{r} \Rightarrow y^{\prime}=r(r x+1)\left(x^{r}+x\right)^{r}$
1.	$\mathbf{y}=\sqrt{\mathbf{u}}$	$\mathbf{y}^{\prime}=\frac{\mathbf{u}^{\prime}}{Y \sqrt{\mathbf{u}}}$	$y=\sqrt{x^{r}-x} \Rightarrow y^{\prime}=\frac{Y x-1}{r \sqrt{x^{r}-x}}$
11	$\mathbf{y}=\|\mathbf{u}\|$	$\mathbf{y}^{\prime}=\frac{\mathbf{u} \mathbf{u}^{\prime}}{\|\mathbf{u}\|}$	$y=\left\|x^{r}-x\right\| \Rightarrow y^{\prime}=\frac{(r x-1)\left(x^{r}-x\right)}{\left\|x^{r}-x\right\|}$
Ir	$y=\sqrt[n]{\mathbf{u}^{\mathbf{m}}}$	$y^{\prime}=\frac{m u^{\prime}}{n \sqrt[n]{u^{n-m}}}$	$y=\sqrt[\psi]{\left(x^{\psi}+1\right)^{r}} \Rightarrow y^{\prime}=\frac{r(r x)}{r \sqrt[r]{x^{r}+1}}$
Ir	$y=\sin x$	$y^{\prime}=\cos \mathrm{x}$	
If	$y=\cos x$	$y^{\prime}=-\sin x$	
10	$y=\operatorname{tg} x$	$y^{\prime}=1+\operatorname{tg}^{r} \mathbf{x}$	
19	$y=\operatorname{cotg} x$	$y^{\prime}=-\left(1+\operatorname{cotg}^{r} \mathbf{x}\right)$	
IV	$\mathrm{y}=\sin \mathrm{u}$	$\mathbf{y}^{\prime}=\mathbf{u}^{\prime} \cos \mathbf{u}$	$y=\sin \sqrt{x} \longrightarrow y^{\prime}=\frac{1}{r \sqrt{x}} \cos \sqrt{x}$
1^	$\mathbf{y}=\cos \mathrm{u}$	$\mathbf{y}^{\prime}=-\mathbf{u}^{\prime} \sin \mathbf{u}$	$y=\cos \frac{1}{x} \longrightarrow y^{\prime}=\frac{+1}{x^{Y}} \sin \frac{1}{x}$
19	$y=\operatorname{tg} u$	$y^{\prime}=u^{\prime}\left(1+t g^{Y} u\right)$	$y=\operatorname{tg}\left(x^{Y}-1\right) \longrightarrow y^{\prime}=r x\left(1+\operatorname{tg}^{\gamma}\left(x^{\gamma}-1\right)\right)$
r.	$y=\operatorname{cotg} u$	$\mathbf{y}^{\prime}=-\mathbf{u}^{\prime}\left(1+\operatorname{cotg}^{\boldsymbol{r}} \mathbf{u}\right)$	$y=\operatorname{cotg}(\gamma x-1) \longrightarrow y^{\prime}=-r\left(1+\operatorname{cotg}^{\gamma}(Y x-1)\right)$

 ${ }^{6}$ (${ }^{(1)}$
(Y)

r (${ }^{(r}$
$\frac{1}{r}(r$
$\frac{-1}{r}(r$ -r (1
(F) (F)
*

Vr。(F

$$
1 r_{0}(r
$$

$$
-1 r_{0}\left(r \quad-v r_{0}(1\right.
$$

حل: گزين (Y)
r (${ }^{\boldsymbol{F}}$
(r)
: مثال : مقدار عددى مشتق تابع ، $y=\frac{(x+r)\left(x^{r}+\Lambda\right)}{x^{r}+1}$ به ازاء $x=-$

- (r) $\frac{1 r}{0}(r$
ir (r
$r(1$
(ヶ)

1) $f(\mathbf{x})=(\mathbf{x}+1)^{r}\left(\mathbf{x}^{r}+r \mathbf{x}+1\right)^{r}$
r) $f(x)=\frac{x+\sqrt{x}}{1+\sqrt{x}}$
$1\left(r \quad \frac{1}{r}(r\right.$
كه $x=\frac{1}{F}$ كدام است؟
$\frac{-1}{r}(r$
$-1(1$
(1) (1)

$$
y^{\prime}=\frac{\pi}{1 \wedge_{0}}\left(1+\operatorname{tg}^{r} x^{0}\right)
$$

\%

$$
\mathbf{f}^{\prime}-\mathbf{g}^{\prime}=1\left(f \quad \mathbf{f}^{\prime}+\mathbf{g}^{\prime}=1(r\right.
$$

$\mathbf{f}^{\prime}=-\mathbf{g}^{\prime}(\mathrm{r}$
$\mathbf{f}^{\prime}=\mathbf{g}^{\prime}$ (
حل

$$
\begin{aligned}
& (\mathbf{u} v)^{\prime}=\mathbf{u}^{\prime} \nu+\nu^{\prime} \mathbf{u} \\
& \left(\frac{\mathbf{u}}{v}\right)^{\prime}=\frac{\mathbf{u}^{\prime} \nu-\nu^{\prime} \mathbf{u}}{\nu^{\gamma}}
\end{aligned}
$$

(\%) ميحجكدام

- (${ }^{r}$
a (Y
\mathbf{a}^{mm} (1
(r)
 بايكزين مىنماثيم و سبس از عبارت برهسب x مشتق مییيريع.
*

$\frac{\pi}{F}(F$
$\frac{\pi}{r}$
$\frac{1}{r}(r$

- (1)
(F) (F) حل : گزين
 $\frac{\pi}{r}\left(\gamma \quad \frac{\pi}{\Lambda}(r\right.$
$\frac{-\pi}{\mu}(\gamma$
$\frac{-\pi}{\Lambda}(1$
(1) لل: الزينه
: \mathbf{y} :

$$
y=f(\mathbf{u}) \longrightarrow \mathbf{y}^{\prime}=\mathbf{u}^{\prime} \mathbf{f}^{\prime}(\mathbf{u})
$$

1) $y=f(\sqrt{x}) \longrightarrow$
r) $y=f\left(x^{r}-r x\right) \longrightarrow$
. $\mathrm{y}=\mathrm{f}\left(\mathbf{x}^{r}\right)$ بيابيد.

$$
\begin{aligned}
& r \text { (}{ }^{F} \\
& -r(r \\
& -{ }^{*}(Y
\end{aligned}
$$

4ــمشتل تابع مركب:

مشتق تابع (fog)(x) را به صورت زير داريم:

$$
(f 0 g)^{\prime}(x)=g^{\prime}(x) \times f^{\prime}(g(x))
$$

 r (${ }^{\prime}$ $1\left(\begin{array}{r}1 \\ \end{array}\right.$ -1 (Y

مشتق منحنى به ازاى طول نقطه تماس، ضريب زاويهى خط مماس است.

 ضريب زاويه خط مباس بدست مى آيد و سبس از رابطه

$$
\text { قائم نيز از رابطه ساس m }=\frac{-1}{\text { m }} \text { m بائم بدست مى آيد: }
$$

\%
$1\left({ }^{(}\right.$

- (r
$\gamma^{-1}(\gamma$
r (1
حل : گَزينه (r)

$$
\mathbf{y}=-r \mathbf{x}(\boldsymbol{r} \quad \mathbf{y}=r x(r \quad y=r x+r(r \quad y=r x-r()
$$

(Y) (Y)

* م مثال: ضنريب زاويه خط قائم بر منحنى تابع y =
$1(4$

$$
\frac{1}{r}(r
$$

$$
\frac{-1}{r}(r
$$

(ץ)

קند טالت لاصس כر معادله لمط مساس:

حالت 1 * اگر ضريب زاريه خط مساس در نقطه A(x
\%
$y=1(f$
$x=1$ (r
$y=$ - (r
$y=x(1)$
x = x。 حالت

* مثالـ: ضريب زاويه خط مماس بر منصنى y=

حالت * * براى يافتن زاويه يك منحنى با محور x ها. منحنى را با y = قطع داده و طول نقطه تلاتى با محور از أنجا α را محاسبه مىكنيم.
*

$$
\text { - (} F
$$

Arctg ${ }^{\gamma}(\Gamma$

$$
\frac{\pi}{r}(\varphi
$$

$$
\frac{\pi}{r}(1
$$

=

قالت \boldsymbol{F} * يافتن زاويه يك منحنى با محور by: مىدانيم طول هر نقطه روى محور y ها، صفر است لذا كـافيست ضـريب

كسر كنيـم (به شكل توجه كنيد).

حالت (F)

حالت ()

٪ .

\%

زاويه يك خـا و يك منحنـا:

زاويهى يك خط و يك منحنى عبارتست از زاويه بين مماس رسم شده بر منحنى در نقطه تقاطع با خط. براى تعيين زاويه خط و

منحنى به ترتيب زير عمل مى كينيم:
ا) خط را با منحنى تطع مى دهيم و مختصات نقطه تقاطع را بدست مى آرريم. Y از از منحنى مشتق گرفته و خريب زاويه خط مماس بر منحنى را در اين نقطه مى يابيم. r
*

(بر منحنى y=x = $y=m x$ مماس باشد، m كدام است؟

${ }^{\mu}(\mathrm{r}$
$\frac{1}{F}(1$
(1) (1)

برای يانتن زاويهى بين دو منحنى، ابتدا دو منحنى را با هم تلاقى داده و طول نقطه تلاقى را مى يابيم و سپس از دو منحنى مشتق

$$
\begin{aligned}
& \text { ك } y=x^{Y} y=\frac{Y Y}{\sqrt{x}} \text { كدام است؟ } \\
& r(F \\
& \frac{r}{r}\left(r \quad \frac{1}{r}(1\right. \\
& \text { حل }
\end{aligned}
$$ تת

$-1(4$
$-r(r$
$r(r$
01
(F)

$\mathbf{m}=\left.\mathbf{f}^{\prime}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{a}}=\mathbf{f}^{\prime}(\alpha)$
$\mathbf{y}-\mathbf{f}(\alpha)=\mathbf{f}^{\prime}(\alpha)(\mathbf{x}-\alpha)$
 * مثال:از مبدأمختصاتدومماسبرمنصنىتابع y = 1 رسممىكنيم معادله خطوط مماس و طولهاى نقاط تماس را بيابيد.

$\Delta Q=f(t+\Delta t)-f(t)$
خواميم داشت و در تتيجه آهنك متوسط تغيير Q (در هر واحد زمان)، برابر است با:

$$
\frac{\Delta \mathbf{Q}}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

حد نسبت نوق وتَى
$\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta Q}{\Delta t}=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}$

 $v=r \ldots \ldots-\wedge \circ \circ t+\Lambda \circ t^{r} \quad$ (لِّتر)
بدست مىآيد، آهنگ آنى تغيير خروج آب از منبع را در لحظه t = بيدا كنيد؟

* مـمال: آهنگ آنى تغيير مساحت يك دايره نسبت به شعاع آن وقتى r = 10 است كدام است؟ $r \circ \pi(\mu \quad r \Delta \pi(r) \quad 10 \pi(Y) \quad 10 \pi(1)$
 , انست. آאر y=f(x بشر، آنقكه.

$$
\begin{aligned}
& y \text { آهنگ متوسط تغيير = }=\frac{\Delta y}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& \text { x آمنگ آنى تغيير y نسبت به } x \text { Lim } \operatorname{Lim}_{\Delta x \rightarrow-} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}=f^{\prime}(x)
\end{aligned}
$$

٪ \% مثالل: آهنگ آنى تغيير مساحت دايره نسبت به تغيير محيط آن را بيابيد.

Page 68

"

در اين نصل به بررسى نتاط اكسترمم و مطن و سهس رسم منحنى ممیردازيم.
اـاكسترمم نساكبا 9 مهالما:
 آنكاه f در c دارای ماكزيمم نسبى است و c را نتطه اكسترمم نسبى به بيان سادهتر حرض نتطثُ c از حرض نتاط ديگر در ممسايگى خود بيشتر يا مساوى است. به شكلهاى زير توجه كنيد.

 (آنظاه ، ، f(x) \geqslant f(c) به بيان سادهتر (f(c.) از هرفهای نقاط ديكر در ممسايعى خود كمتر يا مساوى امت.

-
[a,b] كويند.

ماكزيمبنسبى $=a_{\gamma}$
$=a_{p}$ ماكزيمـمبطلت

$=b_{Y}$ ماكزيمهمطلت $=$ b $_{\text {م }}$

= $={ }_{1}$
= $=C_{\gamma}$

نتهa * نتاط انتوايى يك آع، اكسترمم نسبى نمى تواننر باشنر.

 تعريف نشده يا برابر صفر باشد.

1) $f(x)=x^{r}-x^{0}$
r) $f(x)=\left|x^{\gamma}-x\right|$
r) $f(x)=\sqrt[r]{x^{r}-r x}$

شـ

شكل 1

$$
f^{\prime}(x)=\cdot \text { ريشه }
$$

r| ريشه ساره رافل قرر ملق

هثال * نقاط بحرانى تابع $y=\mid x^{\gamma}-\gamma x$ را بيابيد.

سـ
برایى يافتن اكسترممهاى مطلق يك تابع پيوسته بر يك بازه [a,b] :

1) از تابع مشتق كرفته و نقاط بحرانى را مىيابيم.
Y) مَدار تابع را در هر يك از اين نقاط مىيابيم.

† كوحكترين اين مهادير مىنيمم مطلق و بزركترين آنها ماكزيمم مطلق مىباشد.

$$
\frac{-r}{r}\left(r \quad \frac { - 1 } { r } r \quad \frac { r } { r } \left(r \quad \frac{1}{r}()\right.\right.
$$

حل حل گزينه (1)
Y) ماكزيمـ مطلق و مىنيمم مطلق دارد.

٪)
 1) ماكزيم مطلق دارد، مىنيـم مطلق ندارد. r" مى نيـم مطلق دارد، ماكزيمم مطلق ندارد.

 y

$$
\begin{aligned}
& \text { تابع ماكزيم مطلق ندارد. } \\
& \text { با توجه به مطالب بالا داريم: } \\
& -1 \leqslant x<r \longrightarrow f(0)(1)=f(-1)=-r
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{u}^{u^{\prime}} \rightarrow f^{\prime}(x)=r x^{r}-8 x=\cdot \longrightarrow x=\cdot, x=r \\
& f(\cdot)= \\
& f(Y)=-Y
\end{aligned}
$$

 در x = r اكسترمم مطلق لدارد).

$$
\forall x_{1}, x_{Y} \in \mathbf{I} \quad, \quad x_{1}<x_{\gamma} \Rightarrow \mathbf{f}\left(\mathbf{x}_{1}\right)<\mathbf{f}\left(\mathbf{x}_{\gamma}\right)
$$

به شكلهاى زير دتت كنيد دو شكل زير نـايش توابع اكيداً صعودى مستند.

(1)

(r)

حداكثر در نقاط با حرضهاى متفاوت، مششت صفر شود.

$$
\forall x_{1}, x_{Y} \in I \quad, \quad x_{1}<x_{Y} \Rightarrow f\left(x_{1}\right)>f\left(x_{Y}\right)
$$

شكلهاى زير نـايش توابع اكيداً نزولى مى.اشند.

(1)

(Y)

در شكل (I) : (I ' مهواره كوحكتر از صغر.

 كثال * در مورد صععودى و نزولى بودن توابع زير نظا

$$
\text { 1) } y=\operatorname{Sin} x \quad, \quad x \in\left(\frac{-\pi}{r}, \frac{\pi}{r}\right)
$$

r) $y=x^{r}+1$
 مثال * تابع f(x) = x - Sinx به صورت:

Y) همواره صعودى است.
٪) در مبدأ مشتق ندارد.

() مواره نزولى است.
r
حل حلزين

كثل才 * جهت تغييرات تابع باضابطة f(x) = Sinx - xCosx در فاصطله (, •) كدام وضع را دارد؟
(Y)

٪ (ابتدا نزولى بعد صعودى 1) (نزولى
r) ابتدا صعودى بعد نزولى

حل \% حزينه (Y)
در ناصله (

هثال * كدام تابع زير بر R نزولمى است؟

$$
y=\frac{1}{x+1} \text { (r) } \quad y=e^{-x}(r
$$

$$
y=-e^{-x}(r \quad y=-|x|()
$$

حل ڤ كزينه (ّ) درست است زيرا:
در كزين اول: تابع |x = = ب ب ازاى • > x م معودى و بـ ازاى • > x نزولى است (شكل ا).

در كرين جهارم: با توجه به اين ك إي

مثال * اكر f صعودى و و نزولى باشد، آنكاه توابع fog و fogof به ترتيب:
r|r
(T) صبودى د صبودى است.

1) نزولى و نزولى است.

「
حل حلزينه

نهa * برای تصيين مصرىی - نزولى بورن تركيب تواع، كنيست علامتوى مشتق را ر, سم ضرب كنيم.

مثلال * اكر ءنزولى و g نزولى باشد gof حكونه است؟

نتهa * آك f مسورى باش (f-) نزولى است.

رثلال * اكر ff تابعى صععودى و مثبت و بيوسته باشد $\sqrt{\text { ش جكونه است؟ }}$

حل * كزين (r)

كثال * اكر نمودار تابع y = f(x) به صورت شكل روبرو باشد، نمودار تابع با ضابطه y=

به شكلهاى زير دتت كنيد:

هر دو تابع fو g توابعى صعودى مستند اما جهت انحناى آنها با مم نرق مىكند چگكونه مىتوانيم بين اين دو نوع رفتار تمايز قائل
 مى.ششد. به عبارت سادهتر، تتعر رو به سوى بالا را يكى تابع مىنيـمدار يا تستتى از آن در نظر مىكيريم. در تتعر رو به سوى بالا، خط مساس
 بر منحنى مهواره زير منحنى است.

 منحنى مـواره بالاى منحنى است.

هثال * نمودار تابع با ضابطة y= Sinx - Cosx در حوالى x= $=\frac{\pi}{Y}$ به كدام صورت است؟

حل \$ كزينه (1)

دثلال
(Y ابتدا رو به بالا بعد رو به هايين
(ץ) مواره رو بـ خايين
() ابتدا رو به بايين بعد رو بـ بالا

حل حل

B $\left.{ }^{(}\right)$
A (1)
D ${ }^{(1)}$

C
حل حز كزين (r)

براى تعيين ناط اكسترممشاى لسبى تابع از دو آزمون مشتق اول و دوم استناده ممكنيم: : IVI
 نسبىاست يا مىنيم نسبس، الز ردهبندى زير اسكالاده مىكيم.

 rم هركاه ff

ماكزيم نسبى

ممىنيـم نسبى امت اما تايب در

نه ماكزيم نسبى و نه مىينيم نسبى

ماكزيم نسبى است الما تابع
در x =

دثال * نقاط اكسترمم نسبى را براى تابعهاى زير تعيين كنيد.

1) $f(x)=x^{r}-r x^{r}$
Y) $f(x)=(x-1)^{0}$

 6 $x=r$ (
 x $x=r$ b r b〒

مثال * تابع y=
¢

$$
\begin{aligned}
& \text { با } \\
& \text { (F) حل }
\end{aligned}
$$

 مثال * براى تابع
 (Y)

少
 الف) اكر • > (c) أنعاه f
 تذكر " در حالتىكه • = باشل، آزمون بینتيبه است.

Page 83

مسانلا بهينمسازیا:

يكى از مهتترين كاربردهاى حساب ديفرانسيل و انتكرال به دست آوردن مؤثرتوين طراحى از يكى سحصول اسـت غـالبآ مســـلـ
 مسائل ماكزيمم و مينيمب كاربردى را مطرح مىكنيم.

روالا كلىا باءى يافتنا ماكريمم يا مينيمم:

〒_كهيتى را كه Max يا Min مىشود را تشخيص داده و براى آن رابطهاى بر حسب متغيرها مىنويسيم.
 تا مىى

جدا كنيم؟
هل : ابتدا با يد شكل مسئله را ترسيم كنيم. مقدار ثابت a، متغير x، كميتى كـه مـاكـزيمـم مى مردد حجم مكعب مستطيل است، با توجه به اين كـ مى دانيم حجم بكعب مسـتطيل، حـامل ضرب بـر طـول در عرض در ارتفاع اسـت بس
$V=(a-\gamma x)^{\gamma} x=\left(a^{\gamma}-r a x+\gamma x^{\gamma}\right) x=\mu x^{r}-r a x^{\gamma}+a^{\gamma} x$
$V_{x}^{\prime}=1 r x^{r}-\wedge a x+a^{r}=0 \Rightarrow x=\frac{a}{r}, x=\frac{a}{q}$

 چقدر باشد تا مساحت آن ماكزيمم شود؟

$$
S=x\left(\frac{g-x}{r}\right)=r x-\frac{x^{r}}{r}
$$

$$
S_{x}^{\prime}=r-\frac{r x}{r}=0 \Rightarrow x=r, y=\frac{r}{r}
$$

$$
\begin{aligned}
& \text { اـ تصوير كلى از مسئله را رسم میكنيم. } \\
& \text { Yـ مقدار ثابت را تشخيص مىديميم. } \\
& \text { rـ متغير يا متغير ها را شناسا يى مىكنيم. }
\end{aligned}
$$

مثال * اكر h ارتفاع و L طول قاعده مثلتها و h + YL = باشد بيشترين متدار براى مساحت اين مثلث كدام است؟ $\frac{\Delta r}{18}\left(r \quad \frac{\Delta 1}{18}\left(r \quad \frac{\Delta 0}{19}(r) \frac{P 9}{19}(1)\right.\right.$
(1) هل : كزين

هـ هثال * كشاورزی دارای سيم كافى برایساختن 100 متر حفاظ مىباشد اومىخواهد سهضلع يك زمين مستطيل شكلل را كه يك ضلع آن در امتداد يك ديوار ساختمانى است با سيم حفاظبندى كنـ (مطابق شكل) زمين را با چه طول و عرض انتخاب كند تا بزرگـرين مساحت ممكن را دارا باشد؟

** مثال * مى هواهيم از يك سيم به طول جهار متر، مربع و دايره بسازيم. حقدر سيم براى مربع و جقدر برایى دايره به كار بريم كه سطح حاصل ماكزيمم شود؟

rorr :مبط
 مطلوب است مساحت مثل AOB وقتى كه كهترين مقدار باشد. به شرط آن كه a و b هر دو مثبت باشند.
 حل \$\% مطابق شـكل مسـاحت مستطيل مساوى است با

$$
\begin{aligned}
& A=\frac{a b}{r} \\
& \frac{r-0}{1-a}=\frac{r-b}{1-0} \\
& \Rightarrow b=\frac{r a}{a-1}
\end{aligned}
$$

$A=\frac{1}{r} \mathbf{a b}=\frac{1}{r} \mathbf{a} \cdot \frac{r a}{a-1}=\frac{a^{r}}{a-1}$
$A^{\prime}=0 \Rightarrow A^{\prime}=\frac{a(a-r)}{(a-1)^{r}}, A^{\prime \prime}=\frac{r}{(a-1)^{r}}$
$A^{\prime}=0 \Rightarrow a=0, a=r$
$A=\frac{r^{r}}{r-1}=r$
 مثتقگيرى نمايمّ و دو متغير داريم يكى از متغيرها را بر حسب ديگرى نوشته و از رابطه d بر حسب تكى متغير مشتق مىگيريم.

مثال * نزديكترين فاصله منحنى y ${ }^{\dagger}$ را ${ }^{\dagger}=x+P$ مبدا مختصات تعيين كنيدף
 با استفاده از تضا ياى زير مىتوان ماكزيمـ و مىنيمم توابع را بدون استفاده از مشتق محاسب نمود.

مثال

هثال * ماكزيمم تابع y=x

